En rektangel har längden 2dm
Matte A - Geometri
Omkrets samt area
Omkrets samt area vid månghörningar
Rektangel
Då oss bör räkna ut arean från enstaka rektangel så multiplicerar oss basen tillsammans höjden. identisk sak fullfölja oss tillsammans med kvadrater som existerar därför kallade liksidiga rektanglar, alltså varenda sidorna existerar lika långa.
Tomten var rektangulär så vi ritar upp en rektangel och skriver dess area som var 1408 m2Detta fullfölja därför för att kvadratens area existerar sidan inom kvadrat alternativt sidan upphöjt mot 2.
Lille Bosse existerar ute samt fullfölja kullerbyttor vid gräsmattan utanför villan han samt hans släkt bor inom. Tomten existerar rektangulär samt äger ett yta vid 1408 m2. Hur bred existerar tomten angående dess längd existerar 64 meter?
Vi börjar tillsammans med för att rita enstaka figur.
för att rita upp detta man bör beräkna underlättar många samt avlastar hjärnan likt då förmå fokusera mer vid beräkningen.
Tomten fanns rektangulär därför oss ritar upp ett rektangel samt skriver dess area såsom plats 1408 m2. oss fick även reda vid för att längden (=basen) fanns 64 meter. oss bör alltså räkna ut bredden (=höjden) vid tomten.
Formeln till arean hos enstaka rektangel säger för att basen·höjden=arean.
oss ställer upp den tillsammans med våra anförande liksom oss vet:
Vi besitter idag fått ett ekvation var oss enkel är kapabel åtgärda ut h samt därmed erhålla reda vid bredden.
Svar: Tomten existerar 22 meter bred.
Parallellogram
När man bör beräkna arean vid enstaka parallellogram, var motstående sidorna existerar parallella sålunda använder man identisk formel liksom på grund av enstaka vanlig rektangel.
angående oss tittar vid bilden nedan därför ser oss för att oss får ett rektangel genom för att flytta vid parallellogrammens sidor, vilket oss besitter märkt ut såsom trianglar. detta viktiga existerar för att ni tar ut höjden inom parallellogrammen genom för att dra ett normal ifrån basen samt upp.
En parallellogram äger sidorna 37,3 mm samt 12,5 mm samt höjden 10,1 mm (höjden existerar vinkelrät mot den längre sidan).
Bestäm parallellogrammens omkrets samt area.
Vi börjar tillsammans för att rita ett figur samt märker ut dem måtten oss vet. Den längsta sidan plats 37,3 mm samt detta plats ifrån den likt höjden gick vinkelrätt ut ifrån. Den korta sidan fanns 12,5 mm.
Notera för att jag besitter skrivit mm inom parentes ovanför figuren – en smidigt sätt för att presentera för att samtliga mått inom figuren står inom mm samt därför slipper man notera mot detta efter varenda siffra samt riskera för att figuren blir kladdig samt rörig.
Omkretsen beräknar oss ut genom för att lägga ihop dem fyra sidorna:
Arean existerar basen gånger höjden, var basen motsvarar 37,3 mm samt höjden 10,1 mm.
Svar: Omkretsen existerar 99,6 mm samt arean existerar 376,7 mm2.
Triangel
Arean på grund av ett triangel får oss ut genom för att antingen titta den liksom ett halv rektangel alternativt enstaka halv parallellogram.
Detta ger oss för att arean till ett triangel existerar basen gånger höjden delat tillsammans med 2.
Beräkna omkrets samt area hos triangeln.
För omkretsen lägger oss ihop dem tre sidornas olika längder:
Arean existerar basen gånger höjden delat tillsammans med 2. 0,34 km motsvarar basen vid triangeln samt 0,16 km motsvarar höjden.
Svar: Triangelns omkrets existerar 1,11 km samt arean existerar 27200 m2.
Parallelltrapets
Arean från en parallelltrapets får oss genom för att multiplicera höjden tillsammans summan från dem parallella sidorna dividerade tillsammans 2.
Dessutom har diagonalerna samma längdinom bilden nedan ser oss hur oss kommer fram mot detta. Parallelltrapetser besitter bara numeriskt värde parallella sidor. ifall oss drar enstaka diagonal delas detta inom numeriskt värde trianglar samt då ser oss för att arean på grund av parallelltrapetsen existerar summan från dem båda trianglarnas areor.
Beräkna parallelltrapetsens omkrets samt area.
Vi börjar tillsammans med för att beräkna omkretsen liksom oss får fram genom för att lägga ihop dem 4 sidorna:
Formeln till arean säger för att oss bör addera sidorna a samt b samt sedan gånga detta talet tillsammans höjden samt mot slutligen dela tillsammans 2.
oss ser inom figuren för att a=101 mm samt b=55 mm samt för att höjden existerar 37 mm samt kunna då sätta in dessa anförande inom formeln samt sedan räkna ut arean:
Svar: Omkretsen existerar 24,7 cm samt arean existerar 28,9 cm2.
Kom minnas för att detta gäller andra regler då man skriver angående enheter såsom existerar inom kvadrat!
Skulle oss utföra ifall 2886 mm mot cm skulle oss, noggrann vilket vanligt, flytta kommatecknet en steg åt vänster samt vid således sätt erhålla 288,6 cm.
dock då enheterna existerar inom kvadrat därför blir en steg istället lika tillsammans med 2 steg.
3 m2 t.ex. existerar lika tillsammans med 30 000 cm2. 3 m existerar ju 300 cm, samt då detta existerar kvadrerat sålunda tar oss en steg ytterligare på grund av varenda steg, vilket resulterar inom dubbelt antal nollor alternativt decimaler beroende vid ifall man omvandlar mot större alternativt mindre mått.
Romb
En romb existerar en speciallfall från enstaka parallellogram.
Den ser likadan ut, dock skillnaden existerar för att samtliga sidorna inom romben existerar lika långa.
En rektangel består av fyra sidor där de sidorna mittemot varandra alltid är lika långa och parallella (aldrig kommer korsas även om man gör dem jättelånga)på grund av för att ett fåtal fram omkretsen vid enstaka romb lägger ni bara ihop varenda fyra sidorna samt eftersom dem existerar lika långa förmå oss yttra för att oss mångfaldigar sidlängden tillsammans 4. Arean beräknas vid identisk sätt vilket hos ett parallellogram.
Beräkna rombens omkrets samt area angående denne besitter basen 17 cm samt höjden 13 cm.
(Höjden existerar vinkelrät mot basen).
Börja tillsammans med för att rita enstaka figur samt fyll därefter inom tillsammans den data oss fått.
Omkretsen fås genom för att multiplicera sidan (17) tillsammans med 4:
Formeln till rombens area fanns basen (sidan) gånger höjden, 17 motsvarar basen samt 13 motsvarar höjden:
Svar: Rombens omkrets existerar 68 cm samt arean existerar 221 cm2.
Kvadratrötter
Kvadratroten existerar motsatsen mot för att kvadrera, alltså för att ta en anförande upphöjt mot 2.
då man beräknar ut kvadratroten vid en anförande sålunda blir svaret en anförande likt multiplicerat tillsammans med sig egen blir detta anförande man tog kvadratroten ur.
Beräkna .
Talen 5 samt -5 existerar båda kvadratrötter ur 25 då båda 52 samt (-5)2 existerar lika tillsammans med 25.
Anledningen mot för att x även kunna existera en negativt anförande då detta gäller kvadratrötter existerar regeln vilket säger för att minus · minus = plus.
Svar: x1=5 samt x2=-5.
Räkneregler till kvadratrötter
Dessa regler gäller ifall a samt b existerar positiva tal:
Pythagoras sats
Kan oss nyttja då oss önskar äga reda vid längden utav någon från sidorna inom ett rätvinklig triangel.
A = l ⋅ b A = l ⋅ bdem sidor vilket bildar den räta vinkeln inom triangeln kallas på grund av triangelns kateter medan den tredjeplats sidan kallas till hypotenusa. inom figuren på denna plats nedanför ser oss för att angående oss adderar dem båda kateterna inom kvadrat sålunda får oss hypotenusans kvadrat.
ni äger enstaka rätvinklig triangel vars en katet existerar 4 cm samt den andra 5 cm.
Hur utdragen existerar dess hypotenusa?
För för att erhålla enstaka förbättrad sammanfattning förmå ni rita upp triangeln.
oss benämner hypotenusan tillsammans x. Pythagoras sats säger att:
Alltså:
alternativt förbättrad
Svar: Hypotenusan existerar 6,4 cm.
ni besitter ett rätvinklig triangel.
Dess en katet existerar 3 cm samt hypotenusan existerar 9 cm. Hur utdragen existerar den andra kateten?
Beteckna den andra kateten tillsammans x. Man finder arealet ved at gange længden med bredden
i enlighet med pytagoras sats sålunda är:
Lös ekvationen samt ni får svaret.
Svar: Den andra kateten existerar 8,5 cm.
Notera för att inom dessa numeriskt värde modell äger jag ej brytt mig angående för att anteckna för att detta även finns negativa lösningar vid kvadratrötterna. Detta beror vid för att dem båda exemplen handlar angående för att räkna ut ett sträcka, samt avstånden kunna ju likt vän ej existera negativa.
Cirklar samt sektorer
Då oss bör räkna ut omkretsen samt arean till enstaka cirkel måste oss nyttja oss från konstanten , liksom uttalas ”pi”.
en närmevärde tillsammans med tre gällande siffror till existerar 3,14 samt tillsammans fem gällande siffror blir detta 3,1416. dem flesta miniräknare äger dock enstaka speciell knapp föroch då föreslår jag för att ni använder den istället.
Omkrets anger vi i enheterna millimeter (mm), centimeter (cm), decimeter (dm) och meter (m)Detta till för att erhålla en således detaljerad svar likt möjligt, samt detta existerar förbättrad för att avrunda endast inom slutet istället till för att utföra detta redan ifrån start. Då existerar risken för att erhålla fel svar större.
För för att räkna ut omkretsen på grund av ett cirkel sålunda tar oss diametern multiplicerat tillsammans.
Diametern existerar detta bredaste stället vid cirkeln, man drar en streck ifrån cirkelns kantlinje, genom mittpunkten samt sen fram mot stället mittemot detta man började. Diametern existerar identisk sak såsom radien multiplicerat tillsammans med 2.
Omkretsen på grund av ett cirkel är: alternativt
Arean från enstaka cirkel får oss genom för att multiplicera tillsammans radien inom kvadrat.
Radien existerar halva diametern, detta önskar yttra avståndet ifrån mittpunkten mot cirkelns kant.
Hur massiv existerar plåtbitens area (det nyanserade området) ifall hålets diameter existerar 30 mm?
För för att ett fåtal fram plåtbitens area således bör oss ta plåtbitens bota area, alltså angående detta ej ägde varit en hål var, minus arean från cirkeln.
Börja tillsammans med för att räkna ut plåtbitens all area. För att ta reda på omkretsen behöver vi veta måtten av figurens sidor
oss delar in figuren inom numeriskt värde delar, enstaka kvadrat samt ett triangel samt döper deras areor mot A1 respektive A2.
Vi vet för att A1 existerar enstaka kvadrat då figuren anger för att både basen samt höjden vid fyrkanten existerar 40.
Triangeln besitter även basen 40 samt höjden 40 då oss ser för att den existerar lika upphöjd såsom kvadraten.
Likaså angående triangelns samt kvadratens baser tillsammans existerar 80 samt kvadratens bas existerar 40 därför måste triangelns bas utgöra dem återstående 40.
Den sammanlagda arean (A3) på grund av plåtbiten utan hål existerar således:
Nästa steg blir för att räkna ut cirkelns area. oss vet för att diametern plats 30 mm, samt därför vet oss även för att radien vid den existerar 15 mm (r=30/2), vilket existerar detta enda oss behöver till uträkningen.
Det inringade a:et betyder för att jag besitter sparat detta egentliga talet tillsammans med ett massa decimaler inom grafräknarens minne vid bokstaven A.
Plåtbitens area, detta nyanserade området blir alltså:
var detta inringade a:et anger för att jag äger räknat ut svaret tillsammans detta oavrundade talet.
Svar: Plåtbitens area existerar 1693 mm2.
Cirkelsektorer
En cirkelsektor begränsas från numeriskt värde radier samt ett cirkelbåge.
inom cirkeln mot motsats till vänster äger oss blåmarkerat cirkelsektorn liksom äger vinkeln v. Andelen från vinkeln v vid läka varvet existerar v/360°.
Cirkelbågens längd existerar alltså v/360° från cirkelns omkrets. Då oss dividerar vinkeln v tillsammans detta totala sålunda får oss fram andelen från bota omkretsen.
vi fick också reda på att längden (=basen) var 64 meterifall oss önskar känna till hur massiv den andelen existerar måste oss multiplicera andelen tillsammans den totala omkretsen.
Längden vid enstaka cirkelbåge är:
Cirkelsektorns area får oss fram vid identisk sätt, fast oss multiplicerar andelen tillsammans med cirkelns totala area istället.
Area på grund av cirkelsektor är:
ett cirkelsektor besitter radien 1 cm samt vinkeln 60 grader.
Beräkna dess omkrets samt area.
Vi börjar tillsammans för att rita ett cirkel tillsammans med cirkelbågen inom sig. Den behöver ej ritas precis, detta existerar bara till för att uppgiften bör artikel enklare för att överblicka.
Omkretsen räknas ut genom för att oss lägger ihop längden från dem tre sidorna vilket utgör cirkelbågen, nämligen dem numeriskt värde raka samt sedan den böjda sidan.
Uppgiften säger för att radien existerar 1 cm, vilket innebär för att oss redan fått känna till längden vid dem båda raka sidorna samt behöver idag alltså bara beräkna cirkelbågens längd på grund av för att behärska erhålla fram cirkelsektorns omkrets.
2:an existerar diametern likt oss får fram genom för att dubbla radien likt ju plats 1 cm.
Svaret innehåller egentligen ett faslig massa decimaler, dock såsom ni ser sålunda äger jag avrundat detta samt satt bokstaven A efter talet vilket betyder för att jag besitter sparat bota talet inom grafräknarens minne vid bokstaven A, (se grafräknarsektionen), därför för att jag kunna nyttja detta senare.
Nu vet oss varenda sidorna vid cirkelsektorn samt är kapabel då räkna ut omkretsen:
(A visar för att jag räknat ut omkretsen tillsammans med detta oavrundade talet.)
För arean sålunda vet oss redan dem anförande liksom behövs; vinkeln v samt radien r.
Svar: Cirkelsektorns omkrets existerar 3 cm samt arean existerar 0,5 cm2.
Gillade ni denna sida?
Hjälp andra för att hitta den!
Genom för att trycka vid länkarna denna plats ovan sålunda sprider ni termen angående Matteguiden samt hjälper oss för att växa.
vid därför sätt kunna oss gå vidare för att hjälpa gäst liksom behöver hjälp tillsammans med matten.